
Error Mixology:
Crafting Resilient Cloud Flows 
with Power Automate

Agnius Bartninkas | COO @ Definra



COO and Co-Founder @ Definra

The guy in front of you

Agnius Bartninkas

o Microsoft Business Applications MVP (Power
Automate)

o Used to be the Excel guru of my office, but now am the
grumpy guy telling everyone to stop using Excel

o The most experienced PAD (formerly Softomotive) user
in Lithuania. Most other users were trained by me

o A “certified” beer expert. Now an aspiring cocktail
maker.

www.linkedin.com/in/agnius-bartninkas



Some “theory”:

▪ Types of error handling available

▪ Expressions to use

▪ The issues with some of those 

expressions

Demos:

▪ The “Try, Catch, Finally” approach
▪ A basic approach for simple flows

▪ Handling individual items in loops

▪ A branching approach

Agenda for today

An alternative method using the Flow Run Dataverse table

Q&A



Error Handling

Handling errors is key to all automations,

especially anything running in an enterprise

environment.

But with Power Automate being a tool that is

marketed as extremely citizen-developer-

friendly, lots of users don’t know how to

handle errors - or that they need to do it at

all.



Run-after Settings

Handling errors in PA is done via the “run after settings” on the following action.



The main options on how we can handle errors in Power Automate flows are:

Types of Error Handling

• None – no error handling, meaning the flow fails on any error (not recommended).
• Action level – applying rules after every action in the flow that can possibly fail (not
recommended).

• Containers – grouping actions within a container (scope, condition, loop) and applying error
handling to the entire container (recommended).



The Cool Expressions

To capture an error and get its
details, we need to use one of the
two expressions:

o actions() – for action level

error handling

o result() – for containers,

such as scopes, conditions

or loops



The Not-So-Cool Part of These Expressions

There are at least four different output
schemas of the output depending on the
actions* they come from:

Type 1: error.message (e.g Compose, Send 

an Email (V2))

Type 2: outputs.body.message (e.g Send an 

HTTP request to SharePoint, Get items)

Type 3: 

outputs.body.error.innerError.message (e.g

Create item) 

Type 4: outputs.body.error.message (e.g. 

List rows in Dataverse table)

*Shoutout to David Wyatt for testing and finding the first three. He blogs about Power Automate and shares cool content here: https://dev.to/wyattdave

https://dev.to/wyattdave


Scopes

Using result() in scopes is much easier, as we can group several actions into a single scope and have one
expression to capture any errors inside it.

However, there are also some exceptions to this, too:

▪ It works best when no nesting of containers applies

▪ Loops have a different schema



Getting the Error Details

Because of the different schemas, parsing
the JSON object becomes tricky and
difficult to maintain.

The best approach is thus to convert it to
XML and use an Xpath expression to target
the relevant node, instead of the full
schema.





▪ Handle containers using result() instead of 

actions using actions().

▪ Wrap the entire flow into a Scope (e.g. ‘Main’).
▪ Have minimum nesting. Try avoiding loops 

and conditions inside scopes where possible.

▪ If you do have nesting, handle the exception at 

each container level - i.e. if you have a 

condition or a loop inside a scope, handle the 

exception for the nested container inside the 

scope, too.

▪ Send an email with error details and the flow 

run link.

▪ Terminate after handling.

Key Takeaways

The best way to handle errors in PA
flows is essentially following these
guidelines:



The Main Expressions Used

Converting the result to XML:
xml(json(concat('{"data": {"result":', result('Main'), '}')))

Getting the error details:
xpath(triggerBody()['text'], 'string(//*[translate(local-name(), ''ABCDEFGHIJKLMNOPQRSTUVWXYZ'',
''abcdefghijklmnopqrstuvwxyz'')=''message'' and not(contains(.,''The execution of template action''))
and not(contains(.,''skipped:'')) and not(contains(.,''@variables(''))])‘)

Getting the flow run URL:
concat('https://make.powerautomate.com/manage/environments/', 
workflow()?['tags']?['environmentName’], '/flows/', workflow()?['name'], '/runs/', 
workflow()?['run']['name'])



Before We Wrap-up – The Alternative Way

For simple flows where you don’t want them to recover automatically, but just need some reporting on
what happened, there is now a new “Flow Run” table available in the Dataverse.



Let’s chat more?

www.linkedin.com/in/agnius-bartninkas

Rate the session


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

